Sets of covariant and contravariant spinors for $\mathrm{SU}_{\mathrm{q}}(2)$ and alternative quantizations

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1993 J. Phys. A: Math. Gen. 26 L299
(http://iopscience.iop.org/0305-4470/26/6/002)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.68
The article was downloaded on 01/06/2010 at 20:56

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Sets of covariant and contravariant spinors for $S U_{q}(2)$ and alternative quantizations

C Quesne†
Physique Nucléaire Théorique et Physique Mathématique, Université Libre de Bruxelles, Campus de la Plaine CP229, Boulevard du Triomphe, B1050 Bruxelles, Belgium

Received 27 May 1992

Abstract

. m sets of covariant and contravariant q-bosonic spinors acting in the tensor product of m Fock spaces are constructed and their q-commutation relations determined. Both their transformation properties under the q-algebra $s u_{q}(2)$ and its dual matrix pseudogroup $S U_{q}(2)$ are considered. It is proved that for $m>1$ the contravariant spinors are not related to the covariant ones through Hermitian conjugation. Similar results are also obtained for q-fermionic spinors.

In recent years, it has been observed that essentially two types of q-deformed Heisenberg-Weyl and Clifford algebras are relevant to the theory of quantum groups and supergroups.

On one hand, Biedenharn (1989) and Macfarlane (1989) independently introduced a q-analogue of the harmonic oscillator and its associated q-boson operators. By considering two independent pairs of such operators $a_{i}^{\dagger}, a_{i}, i=1,2$, they extended the Schwinger realization of $s u(2)$ to the corresponding q-algebra $s u_{q}(2)$. The same type of construction was then carried through for most q-algebras (Sun and Fu 1989, Hayashi 1990, Kulish and Damaskinsky 1990) and, by introducing a q-deformed fermionic oscillator, for most q-superalgebras (Chaichian and Kulish 1990, Chaichian et al 1990, Floreanini et al 1991).

On the other hand, it was observed that, contrary to what happens for ordinary boson or fermion operators in the $q \rightarrow 1$ limit, the q-deformed creation operators do not transform covariantly under the dual matrix pseudogroup $S U_{q}(2)$. One has therefore to introduce a second type of q-boson (or q-fermion) operators A_{i}^{\dagger}, A_{i}, $i=1,2$, which may be obtained by using their transformation properties under $S U_{q}(2)$ (Pusz and Woronowicz 1989, Chaichian et al 1991, Nomura 1991b, c) or under the corresponding q-algebra $s u_{q}$ (2) (Biedenharn 1990, Biedenharn and Tarlini 1990). It appears that $S U_{q}(2)$-covariance requires a particular coupling of both modes that is related to the non-commutativity factors in $S U_{q}(2)$-covariant differential calculus (Wess and Zumino 1990). Connections with the quantum group braid matrix have also been recently stressed (Rittenberg and Scheunert 1992, Hadjiivanov et al 1992).
\dagger Directeur de recherches FNRS, E-mail address: cquesne@ulb.ac.be

The construction of covariant spinors ($A_{1}^{\dagger}, A_{2}^{\dagger}$) or contravariant ones (A_{1}, A_{2}) is of course a special case of the more general problem of defining tensor operators for quantum groups (Biedenharn 1990, Biedenharn and Tarlini 1990, Nomura 1990, 1991a, b, c, Zhang et al 1991, Rittenberg and Scheunert 1992, Hadjiivanov et al 1992).

Some additional problems arise when one considers m independent sets of covariant and contravariant q-bosonic spinors $\left\{\left(A_{1 s}^{\dagger}, A_{2 s}^{\dagger}\right),\left(A_{1 s}, A_{2 s}\right)\right\}$, $s=$ $1,2, \ldots, m$, each acting in a different q-Fock space F_{s}, because, except for $s=1$, they do not transform covariantly under $S U_{q}(2)$ in the tensor product space $F^{(m)} \equiv F_{1} \otimes F_{2} \otimes \cdots \otimes F_{m}$. Hence, in the latter, commutativity of the various sets should be relaxed. Such a difficulty in the theory of tensor operators for quantum groups is known to be related to the non-commutativity of the $s u_{q}(2)$ Hopf algebra co-product (Rittenberg and Scheunert 1992).

Recently, Nomura (1991b, c) tried to solve this problem in the case where $m=2$ by determining q-commutation relations for creation and annihilation operators $t_{i s}^{\dagger}$, $t_{i s}, i, s=1,2$, under the following restrictions: (i) invariance under the $S U_{q}(2)$ transformations, (ii) uniqueness of scalar and vector operators made from given sets of spinors (as in the $q \rightarrow 1$ limit), and (iii) consistency conditions imposed by associativity. It turns out, however, that the operators found do not satisfy property (iii) if $t_{i s}$ is defined as the Hermitian conjugate of $t_{i s}^{\dagger} . \dagger$

The purpose of the present letter is two-fold: firstly to show that Nomura's problem does only have a solution provided no Hermiticity relation is assumed between covariant and contravariant spinors; secondly to find by q-algebraic techniques the explicit expressions of the latter in terms of the operators $A_{i s}^{\dagger}, A_{i s}$, or $a_{i s}^{\dagger}, a_{i s}$, acting in F_{s} only. In such a way, we shall unify the approaches based on the transformation properties of spinors under $S U_{q}(2)$ and $s u_{q}(2)$ respectively, while providing a generalization of Nomura's results to arbitrary m values and to q-fermionic spinors. Extension of the present work to $S U_{q}(n)$ is in progress and will be reported elsewhere.

Let us first consider the case of q-bosonic spinors. The two-dimensional matrices belonging to $S U_{q}(2)$ are denoted by

$$
M=\left(\begin{array}{ll}
a & b \tag{1}\\
c & d
\end{array}\right)
$$

where a, b, c, d are non-commuting objects satisfying the relations

$$
\begin{array}{ll}
b a=q^{1 / 2} a b & c a=q^{1 / 2} a c \quad c b=b c \quad d b=q^{1 / 2} b d \\
d c=q^{1 / 2} c d & a d-q^{-1 / 2} b c=d a-q^{1 / 2} b c=1 \tag{2}
\end{array}
$$

and q is a positive number $(q \neq 1)$. Under the *-involution, M is transformed into

$$
M^{*}=\left(\begin{array}{ll}
a^{*} & b^{*} \tag{3}\\
c^{*} & d^{*}
\end{array}\right)=\left(\begin{array}{cc}
d & -q^{-1 / 2} c \\
-q^{1 / 2} b & a
\end{array}\right)
$$

\dagger In Nomura's papers, $t_{11}^{\dagger}, t_{21}^{\dagger}, t_{12}^{\dagger}$ and t_{22}^{\dagger} are denoted by $a^{\dagger}, b^{\dagger}, e^{\dagger}$ and f^{\dagger}, respectively. For their q-commutation relations, four different solutions are obtained. For that given in equation (2.17) of Nomura (1991c), it is easy to check that the braiding relation is not satisfied by $e^{\dagger} a^{\dagger} e$, for instance. One gets similar results for the remaining three solutions.
and q is left unchanged.
By definition, covariant and contravariant spinors, denoted by $t_{s}^{\dagger}=\left(t_{1 s}^{\dagger}, t_{2 s}^{\dagger}\right)$ and $\boldsymbol{u}_{s}=\left(u_{1 s}, u_{2 s}\right)$ respectively, obey the following transformation laws under $S U_{q}(2)$:

$$
\begin{equation*}
\boldsymbol{t}_{s}^{\prime \dagger}=\boldsymbol{t}_{s}^{\dagger} \mathbf{M} \quad \mathbf{u}_{s}^{\prime}=u_{s} M^{*} \tag{4}
\end{equation*}
$$

Here $u_{i s}$ is not assumed a priori to be the Hermitian conjugate of $t_{i s}^{\dagger}$. If $u_{s}=$ ($u_{13}, u_{2 s}$) is a contravariant spinor, then $\bar{u}_{s}=\left(\bar{u}_{13}, \tilde{u}_{2 s}\right)=\left(q^{1 / 4} u_{2 s},-q^{-1 / 4} u_{1 s}\right)$ is a covariant one. We shall collectively denote both covariant spinors t_{s}^{\dagger} and \tilde{u}_{s} by τ_{s} and consider two s values (hence $m=2$).

For a given s value, Nomura (1991b) found two sets of q-commutation relations satisfying conditions (i), (ii), and (iii), as enumerated in the introduction. One of them is given by
$t_{2 s}^{\dagger} t_{1 s}^{\dagger}=q^{1 / 2} t_{1 s}^{\dagger} t_{2 s}^{\dagger} \quad u_{1 s} u_{2 s}=q^{1 / 2} u_{2 s} u_{1 s} \quad u_{2 s} s_{1 s}^{\dagger}=q^{1 / 2} t_{1 s}^{\dagger} u_{2 s}$
$u_{1 s} \dagger_{2 s}^{\dagger}=q^{1 / 2} t_{2 s}^{\dagger} u_{1 s} \quad u_{1 s} t_{1 s}^{\dagger}=q t_{1 s}^{\dagger} u_{1 s}+1$
$u_{2 s} t_{2 s}^{\dagger}=q t_{2 s}^{\dagger} u_{2 s}+(q-1) t_{1 s}^{\dagger} u_{1 s}+1$
while the other can be obtained from (5) by the substitutions $t_{1 s}^{\dagger} \leftrightarrow t_{2 s}^{\dagger}, u_{1 s} \leftrightarrow u_{2 s}$, and $q \rightarrow q^{-1}$. Both solutions were found previously by Pusz and Woronowicz (1989). In the following, we shall restrict ourselves to the case (5).

Considering now τ_{1} and τ_{2} and imposing condition (ii) of Nomura, we obtain four sets of relations of the type

$$
\begin{equation*}
\left[\tau_{2} \times \tau_{1}\right]_{0}^{0}=-q^{\alpha}\left[\tau_{1} \times \tau_{2}\right]_{0}^{0} \quad\left[\tau_{2} \times \tau_{1}\right]_{\mu}^{1}=q^{\beta}\left[\tau_{1} \times \tau_{2}\right]_{\mu}^{1} \tag{6}
\end{equation*}
$$

according to the choice made for τ_{1} and τ_{2}. Here $\left[\tau_{s} \times \tau_{t}\right]_{\mu}^{\lambda}$ denotes the coupling of the two spinors τ_{s} and τ_{t} to a resultant scalar or vector by means of the $S U_{q}(2)$ Wigner coefficients

$$
\begin{align*}
& \left\langle\frac{1}{2} m, \left.\frac{1}{2}-m \right\rvert\, 00\right\rangle_{q}=(-1)^{\frac{1}{2}-m} \frac{q^{m / 2}}{\sqrt{[2]_{q}}} \tag{7}\\
& \left\langle\frac{1}{2} \pm \frac{1}{2}, \left.\frac{1}{2} \pm \frac{1}{2} \right\rvert\, 1 \pm 1\right\rangle_{q}=1 \quad\left\langle\frac{1}{2} m, \left.\frac{1}{2}-m \right\rvert\, 10\right\rangle_{q}=\frac{q^{-m / 2}}{\sqrt{[2]_{q}}}
\end{align*}
$$

where

$$
\begin{equation*}
[x]_{q} \equiv \frac{q^{x / 2}-q^{-x / 2}}{q^{1 / 2}-q^{-1 / 2}} \tag{8}
\end{equation*}
$$

is a q-number. The exponents α and β are two real numbers subject to the restriction that τ_{1} and τ_{2} should satisfy some consistency conditions imposed by associativity (Nomura's condition (iii)). In principle, we may have different sets $\left\{\alpha_{a}, \beta_{a}\right\}$ for the four possible choices for $\left\{\tau_{1}, \tau_{2}\right\}$.

Considering first the case $\left\{\tau_{1}, \tau_{2}\right\}=\left\{t_{1}^{\dagger}, t_{2}^{\dagger}\right\}$ and working out the braiding relations for $t_{i 1}^{\dagger}{ }_{1} t_{j 2}^{\dagger} t_{k 1}^{\dagger}$ and $t_{i 2}^{\dagger} t_{j 1}^{\dagger} t_{k 2}^{\dagger}$, we obtain two families of solutions for $\left\{\alpha_{1}, \beta_{1}\right\}$ corresponding to arbitrary α_{1} and to $\beta_{1}=\alpha_{1}+\delta_{1}$, with $\delta_{1}=1$ or -1 . Proceeding in the same way for $\left\{\tau_{1}, \tau_{2}\right\}=\left\{\tilde{u}_{1}, \tilde{u}_{2}\right\},\left\{\tilde{u}_{1}, t_{2}^{\dagger}\right\}$, and $\left\{t_{1}^{\dagger}, \tilde{u}_{2}\right\}$, we get similar results, namely $\beta_{a}=\alpha_{a}+\delta_{a}, a=2,3,4$ with arbitrary α_{a} and $\delta_{a}= \pm 1$. Working out finally the braiding relations for $t_{i 1}^{\dagger} t_{j 2}^{\dagger} \tilde{u}_{k 1}, t_{i 2}^{\dagger}{ }_{i}^{t}{ }_{j 1}^{\dagger} \tilde{u}_{k 2}, t_{i 1}^{\dagger} \tilde{u}_{j 2} \tilde{u}_{k 1}$, and $t_{i 2}^{\dagger} \bar{u}_{j 1} \tilde{u}_{k 2}$, we obtain the additional conditions $\delta_{1}=\delta_{2}=\delta_{3}=\delta_{4}=\delta, \alpha_{1}=\alpha_{2}=\alpha$, and $\alpha_{3}=\alpha_{4}=-\alpha-\frac{3}{2} \delta$. So altogether we are left with two families of solutions corresponding to $\delta=1$ or -1 , and arbitrary α.

The simplest solutions correspond to the case where we have the same exponents in (6) for any $\left\{\tau_{1}, \tau_{2}\right\}$, namely $\alpha=-\frac{3}{4} \delta$ and $\beta=\frac{1}{4} \delta$. Hence the q-commutation relations for the components of two covariant q-bosonic tensors with $s=1$ and $t=2$, respectively, can be written as

$$
\begin{array}{ll}
\tau_{1 s} \tau_{1 t}=q^{-1 / 4} \tau_{1 t} \tau_{1 s} & \tau_{1 s} \tau_{2 t}=q^{1 / 4} \tau_{2 t} \tau_{1 s}-\left(q^{3 / 4}-q^{-1 / 4}\right) \tau_{1 t} \tau_{2 s} \\
\tau_{2 s} \tau_{1 t}=q^{1 / 4} \tau_{1 t} \tau_{2 s} & \tau_{2 s} \tau_{2 t}=q^{-1 / 4} \tau_{2 t} \tau_{2 s} \tag{9}
\end{array}
$$

or
$\tau_{1 s} \tau_{1 t}=q^{1 / 4} \tau_{1 t} \tau_{1 s} \quad \tau_{1 s} \tau_{2 t}=q^{-1 / 4} \tau_{2 t} \tau_{1 s}$
$\tau_{2 s} \tau_{1 t}=q^{-1 / 4} \tau_{1 t} \tau_{2 s}+\left(q^{1 / 4}-q^{-3 / 4}\right) \tau_{2 t} \tau_{1 s} \quad \tau_{2 s} \tau_{2 t}=q^{1 / 4} \tau_{2 t} \tau_{2 s}$
according to whether $\delta=1$ or -1 . Equation (9) is reminiscent of some relations previously found by Carow-Watamura et al (1990). It is now clear that neither (9) nor (10) are compatible with the Hermiticity conditions $u_{i s}=\left(t_{i s}^{\dagger}\right)^{\dagger}$ imposed by Nomura (1991b, c). From (9), for instance, we indeed obtain $t_{11}^{\dagger} t_{22}^{\dagger}=q^{1 / 4} t_{22}^{\dagger} t_{11}^{\dagger}-$ ($q^{3 / 4}-q^{-1 / 4}$) $t_{12}^{\dagger} t_{21}^{\dagger}$ and $u_{11} u_{22}=q^{1 / 4} u_{22} u_{11}$. Similar conclusions would have been drawn had we left α arbitrary. As a matter of fact, the existence of a pair of solutions, as given in (9) and (10), is intimately connected with the lack of Hermiticity relation between $t_{i s}^{\dagger}$ and $u_{i s}$. It can indeed easily be checked that if $\left\{t_{1}^{\dagger}, t_{2}^{\dagger}\right\}$, $\left\{t_{1}^{\dagger}, \tilde{u}_{2}\right\},\left\{\tilde{u}_{1}, t_{2}^{\dagger}\right\},\left\{\tilde{u}_{1}, \bar{u}_{2}\right\}$ satisfy (9), then the Hermitian conjugates $\left\{u_{1}^{\dagger}, u_{2}^{\dagger}\right\}$, $\left\{u_{1}^{\dagger}, \tilde{t}_{2}\right\},\left\{\tilde{t}_{1}, u_{2}^{\dagger}\right\},\left\{\tilde{t}_{1}, \tilde{t}_{2}\right\}$ fulfil (10). We shall now contrast the approach based upon $S U_{q}(2)$ considered above with that relying on $s u_{q}(2)$. With the help of the latter, which is much simpler, we shall derive the q-commutation relations of m sets of q-bosonic covariant spinors $\tau_{s}, s=1, \ldots, m$, where τ_{s} stands for $t_{s}^{\dagger}=\left(t_{1 s}^{\dagger}, t_{2 s}^{\dagger}\right)$ or $\bar{u}_{s}=\left(\tilde{u}_{1 s}, \tilde{u}_{2 s}\right)$.

The $s u_{q}(2) q$-algebra is the associative algebra with generators J_{0}, J_{+}, J_{-}, and relations

$$
\begin{equation*}
\left[J_{0}, J_{ \pm}\right]= \pm J_{ \pm} \quad\left[J_{+}, J_{-}\right]=\left[2 J_{0}\right]_{q} \tag{11}
\end{equation*}
$$

where $\left[2 J_{0}\right]_{q}$ is defined as in (8). It is a quasitriangular Hopf algebra with a coproduct Δ, a co-unit ϵ, an antipode S, and a universal \mathcal{R} matrix, given by

$$
\begin{equation*}
\Delta J_{0}=J_{0} \otimes I+I \otimes J_{0} \quad \Delta J_{ \pm}=J_{ \pm} \otimes q^{J_{0} / 2}+q^{-J_{0} / 2} \otimes J_{ \pm} \tag{12a}
\end{equation*}
$$

$\epsilon J_{0}=\epsilon J_{ \pm}=0$
$S J_{0}=-J_{0} \quad S J_{ \pm}=-q^{ \pm 1 / 2} J_{ \pm}$.
$\mathcal{R}=q^{J_{0} \otimes J_{0}} \sum_{n=0}^{\infty} \frac{\left(1-q^{-1}\right)^{n}}{[n]_{q}!} q^{n(n-1) / 4}\left(q^{J_{0} / 2} J_{+}\right)^{n} \otimes\left(q^{-J_{0} / 2} J_{-}\right)^{n}$
respectively (Majid 1990).
The q-algebra $s u_{q}(2)$ admits a q-analogue of $s u(2)$ Schwinger realization (Biedenharn 1989, Macfarlane 1989)

$$
\begin{equation*}
J_{0}=\frac{1}{2}\left(N_{1}-N_{2}\right) \quad J_{+}=a_{1}^{\dagger} a_{2} \quad J_{-}=a_{2}^{\dagger} a_{1} \tag{13}
\end{equation*}
$$

in terms of the q-boson operators $N_{i}=\left(N_{i}\right)^{\dagger}, a_{i}^{\dagger}, a_{i}=\left(a_{i}^{\dagger}\right)^{\dagger}, i=1,2$, acting in a q-Fock space F and satisfying the relations

$$
\begin{align*}
& {\left[N_{i}, a_{j}^{\dagger}\right]=\delta_{i j} a_{j}^{\dagger} \quad\left[N_{i}, a_{j}\right]=-\delta_{i j} a_{j}} \\
& {\left[a_{1}^{\dagger}, a_{2}^{\dagger}\right]=\left[a_{1}, a_{2}\right]=\left[a_{1}, a_{2}^{\dagger}\right]=\left[a_{2}, a_{1}^{\dagger}\right]=0} \tag{14}\\
& a_{i} a_{i}^{\dagger}-q^{ \pm 1 / 2} a_{i}^{\dagger} a_{i}=q^{\mp N_{i} / 2} .
\end{align*}
$$

An irreducible tensor of rank λ with respect to $s u_{q}(2)$ is defined as a set of $2 \lambda+1$ operators $T_{\mu}^{\lambda}, \mu=\lambda, \lambda-1, \ldots,-\lambda$, satisfying the relations (Rittenberg and Scheunert 1992)

$$
\begin{equation*}
J_{0}\left(T_{\mu}^{\lambda}\right)=\mu T_{\mu}^{\lambda} \quad J_{ \pm}\left(T_{\mu}^{\lambda}\right)=\left([\lambda \mp \mu]_{q}[\lambda \pm \mu+1]_{q}\right)^{1 / 2} T_{\mu \pm 1}^{\lambda} \tag{15}
\end{equation*}
$$

where

$$
\begin{equation*}
J_{\sigma}\left(T_{\mu}^{\lambda}\right) \equiv \sum_{r}\left(J_{\sigma}\right)_{r}^{1} T_{\mu}^{\lambda} S\left(J_{\sigma}\right)_{r}^{2} \quad(\sigma=+, 0,-) \tag{16}
\end{equation*}
$$

and $\Delta J_{\sigma}=\sum_{r}\left(J_{\sigma}\right)_{r}^{1} \otimes\left(J_{\sigma}\right)_{r}^{2}$. Hence, by virtue of (12),

$$
\begin{equation*}
J_{0}\left(T_{\mu}^{\lambda}\right) \equiv\left[J_{0}, T_{\mu}^{\lambda}\right] \quad J_{ \pm}\left(T_{\mu}^{\lambda}\right) \equiv J_{ \pm} T_{\mu}^{\lambda} q^{-J_{0} / 2}-q^{ \pm 1 / 2} q^{-J_{0} / 2} T_{\mu}^{\lambda} J_{ \pm} \tag{17}
\end{equation*}
$$

From T_{μ}^{λ}, one can construct by Hermitian conjugation another irreducible tensor of rank λ

$$
\begin{equation*}
\tilde{T}_{\mu}^{\lambda}=(-1)^{\lambda-\mu} q^{\mu / 2}\left(T_{-\mu}^{\lambda}\right)^{\dagger} \tag{18}
\end{equation*}
$$

Covariant q-boson creation (resp. annihilation) operators A_{i}^{\dagger} (resp. \tilde{A}_{i}), $i=1,2$, acting in F, are defined by (15) where $\lambda= \pm \mu=\frac{1}{2}, T_{1 / 2}^{1 / 2}=A_{1}^{\dagger}$ (resp. \tilde{A}_{1}), and $T_{-1 / 2}^{1 / 2}=A_{2}^{\dagger}$ (resp. \tilde{A}_{2}). Up to some arbitrary function of $N_{1}+N_{2}$, they can be expressed in terms of $N_{i}, a_{i}^{\dagger}, a_{i}$ ast

$$
\begin{align*}
& A_{1}^{\dagger}=a_{1}^{\dagger} q^{N_{1} / 4} \quad A_{2}^{\dagger}=a_{2}^{\dagger} q^{\left(2 N_{1}+N_{2}\right) / 4} \tag{19}\\
& \bar{A}_{1}=q^{1 / 4} A_{2}=q^{\left(2 N_{1}+N_{2}+1\right) / 4} a_{2} \quad \tilde{A}_{2}=-q^{-1 / 4} A_{1}=-q^{\left(N_{1}-1\right) / 4} a_{1} .
\end{align*}
$$

[^0]With the contravariant annihilation operators A_{i}, the covariant creation operators A_{i}^{\dagger} satisfy q-commutation relations analogous to those given in (5) with A_{i}^{\dagger} and A_{i} substituted for $t_{i s}^{\dagger}$ and $u_{i s}$ respectively.

Consider now m independent q-Fock spaces $F_{s}, s=1,2, \ldots, m$, and corresponding q-boson operators $N_{i s}, a_{i s}^{\dagger}, a_{i s}, A_{i s}^{\dagger}, A_{i s}, i=1,2, s=1,2, \ldots, m$. For different s values, these operators are assumed to commute with one another, while for a given s value they satisfy equations similar to (5) and (14).

In the tensor product space $F^{(m)}$, the action of $s u_{q}(2)$ is given by the iterated co-product

$$
\Delta^{(m-1)} J_{\sigma} \equiv \begin{cases}\Delta J_{\sigma} & \text { if } m=2 \tag{20}\\ \left(\Delta \otimes I^{(m-2)}\right) \Delta^{(m-2)} J_{\sigma} & \text { if } m>2\end{cases}
$$

or

$$
\begin{align*}
& \Delta^{(m-1)} J_{0}=\Delta^{(m-2)} J_{0} \otimes I+I^{(m-1)} \otimes J_{0} \\
& \Delta^{(m-1)} J_{ \pm}=\Delta^{(m-2)} J_{ \pm} \otimes q^{J_{0} / 2}+q^{-\Delta^{(m-2)} J_{0} / 2} \otimes J_{ \pm} \tag{21}
\end{align*}
$$

where $I^{(m)} \equiv I \otimes I \otimes \cdots \otimes I$ (m times). Hence, irreducible tensors of rank λ in $F^{(m)}$ are defined by (15) and (17), where J_{σ} is replaced by $\Delta^{(m-1)} J_{\sigma}$.

As emphasized by Rittenberg and Scheunert (1992), if T_{μ}^{λ} is an irreducible tensor of rank λ in F_{1} or in F_{2}, then $T_{\mu}^{\lambda} \otimes I$ is also an irreducible tensor of rank λ in $F^{(2)}=F_{1} \otimes F_{2}$ in the former case, whereas $I \otimes T_{\mu}^{\lambda}$ is not in the latter. By generalizing their procedure for constructing irreducible tensors in the tensor product space $F^{(2)}$, the following statements can be easily proved:
(i) If T_{μ}^{λ} is an irreducible tensor of rank λ in $F^{(m-1)}$, then $T_{\mu}^{\lambda} \otimes I$ has the same property in $F^{(m)}$.
(ii) If T_{μ}^{λ} is an irreducible tensor of $\operatorname{rank} \lambda$ in F_{m}, then
$\mathcal{R}_{m, m-1} \mathcal{R}_{m, m-2} \ldots \mathcal{R}_{m 1}\left(I^{(m-1)} \otimes T_{\mu}^{\lambda}\right) \mathcal{R}_{m 1}^{-1} \ldots \mathcal{R}_{m, m-2}^{-1} \mathcal{R}_{m, m-1}^{-1}$
has the same property in $F^{(m)}$. In (22), $\mathcal{R}_{m s}, s=1, \ldots, m-1$, is defined by

$$
\begin{equation*}
\mathcal{R}_{m s}=\sum_{r} I^{(s-1)} \otimes \mathcal{R}_{r}^{2} \otimes I^{(m-s-1)} \otimes \mathcal{R}_{r}^{1} \tag{23}
\end{equation*}
$$

where \mathcal{R}_{r}^{1} and \mathcal{R}_{r}^{2} are given by the decomposition $\mathcal{R}=\sum_{r} \mathcal{R}_{r}^{1} \otimes \mathcal{R}_{r}^{2}$ of the \mathcal{R} matrix ($12 d$).

By using (12d), (22), and (23), one obtains the result that the operators

$$
\begin{equation*}
t_{11}^{\dagger}=A_{11}^{\dagger} \otimes I^{(m-1)} \quad t_{21}^{\dagger}=A_{21}^{\dagger} \otimes I^{(m-1)} \tag{24}
\end{equation*}
$$

and

$$
\begin{align*}
& t_{1 s}^{\dagger}=q^{\Delta^{(0-2)} J_{0} / 2} \otimes A_{1 s}^{\dagger} \otimes I^{(m-s)} \\
& t_{2 s}^{\dagger}=q^{-\Delta^{(r-2)} J_{0} / 2} \otimes A_{2 s}^{\dagger} \otimes I^{(m-s)}+\left(q^{1 / 4}-q^{-3 / 4}\right) \Delta^{(s-2)} J_{-} \otimes A_{1 s}^{\dagger} \otimes I^{(m-s)} \tag{25}
\end{align*}
$$

where $s=2, \ldots, m$, are the components of m covariant spinors in $F^{(m)}$. The same is true for the operators $\tilde{u}_{i s}, i=1,2, s=1,2, \ldots, m$, obtained by replacing $A_{i s}^{\dagger}$ by $\bar{A}_{i s}$ in (24) and (25). It is actually straightforward to check that all these operators satisfy (15) and (17) where J_{σ} is replaced by $\Delta^{(m-1)} J_{\sigma}$.

It is now an easy task to prove that the operators defined in (24), (25) and those obtained by substituting $\tilde{A}_{i s}$ for $A_{i s}^{\dagger}$ have the same q-commutation relations as those obtained by using transformations under $S U_{q}(2)$, namely that they satisfy (5) and (9), where in the former $1 \leqslant s \leqslant m$ and in the latter $1 \leqslant s<t \leqslant m$. With the help of (13), (19) and (21), we have thus realized the operators that are solutions of Nomura's problem in terms of $N_{i s}, A_{i s}^{\dagger}, A_{i s}$ or equivalently in terms of $N_{i s}, a_{i s}^{\dagger}, a_{i s}$. From (24), (25), and their counterparts for $\tilde{u}_{i s}$, it is clear that $u_{i 1}=\left(t_{i 1}^{\dagger}\right)^{\dagger}$, but $u_{i s} \neq\left(t_{i s}^{\dagger}\right)^{\dagger}$ for $s=2, \ldots, m$. In spite of this lack of Hermiticity, the $S U_{q}(2)$-invariant operators $\sum_{i} t_{i s}^{\dagger} u_{i s}, s=1, \ldots, m$, are Hermitian as they can be expressed as

$$
\begin{equation*}
\sum_{i} t_{i s}^{\dagger} u_{i s}=I^{(s-1)} \otimes \sum_{i} A_{i s}^{\dagger} A_{i s} \otimes I^{(m-s)} \tag{26}
\end{equation*}
$$

The case of q-fermionic spinors can be dealt with in a similar way. The q algebra $s u_{q}(2)$ admits the realization (13) in terms of q-fermion operators N_{i}, a_{i}^{\dagger}, $a_{i}, i=1,2$, satisfying relations of the type

$$
\begin{align*}
& {\left[N_{i}, a_{j}^{\dagger}\right]=\delta_{i j} a_{j}^{\dagger} \quad\left[N_{i}, a_{j}\right]=-\delta_{i j} a_{j}} \\
& \left\{a_{1}^{\dagger}, a_{2}^{\dagger}\right\}=\left\{a_{1}, a_{2}\right\}=\left\{a_{1}, a_{2}^{\dagger}\right\}=\left\{a_{2}, a_{1}^{\dagger}\right\}=0 \tag{27}\\
& a_{i} a_{i}^{\dagger}+q^{ \pm 1 / 2} a_{i}^{\dagger} a_{i}=q^{ \pm N_{i} / 2} .
\end{align*}
$$

Such operators may, however, be considered as ordinary fermion operators (Floreanini et al 1991).

Covariant q-fermionic spinors are given by equations similar to (24), (25), and their counterparts for $\tilde{u}_{i s}$, where $A_{i s}^{\dagger}$ now assumes the following form:

$$
\begin{equation*}
A_{1 s}^{\dagger}=a_{1 s}^{\dagger} q^{-N_{1 s} / 4}=a_{1 s}^{\dagger} \quad A_{2 s}^{\dagger}=a_{2 s}^{\dagger} q^{-\left(2 N_{1 s}+N_{2 s}\right) / 4}=a_{2 s}^{\dagger}\left(1+\left(q^{-1 / 2}-1\right) N_{1 s}\right) \tag{28}
\end{equation*}
$$

where use is made of the property $N_{i s}^{2}=N_{i s}$. Instead of (5) and (9), they satisfy q-anticommutation relations of the type

$$
\left.\begin{array}{l}
\left(t_{1 s}^{\dagger}\right)^{2}=\left(t_{2 s}^{\dagger}\right)^{2}=\left(u_{1 s}\right)^{2}=\left(u_{2 s}\right)^{2} \quad t_{2 s}^{\dagger} t_{1 s}^{\dagger}=-q^{-1 / 2} t_{1 s}^{\dagger} t_{2 s}^{\dagger} \\
u_{1 s} u_{2 s}=-q^{-1 / 2} u_{2 s} u_{1 s} \tag{29}\\
u_{2 s} t_{1 s}^{\dagger}=-q^{-1 / 2} t_{1 s}^{\dagger} u_{2 s} \quad u_{1 s} t_{2 s}^{\dagger}=-q^{-1 / 2} t_{2 s}^{\dagger} u_{1 s} \\
u_{1 s} t_{1 s}^{\dagger}=-t_{1 s}^{\dagger} u_{1 s}+1
\end{array} u_{2 s} t_{2 s}^{\dagger}=-t_{2 s}^{\dagger} u_{2 s}+\left(q^{-1}-1\right) t_{1 s}^{\dagger} u_{1 s}+1\right) ~ \$
$$

and
$\tau_{1 s} \tau_{1 t}=-q^{-1 / 4} \tau_{1 t} \tau_{1 s} \quad \tau_{1 s} \tau_{2 t}=-q^{1 / 4} \tau_{2 t} \tau_{1 s}+\left(q^{3 / 4}-q^{-1 / 4}\right) \tau_{1 t} \tau_{2 s}$
$\tau_{2 s} \tau_{1 t}=-q^{1 / 4} \tau_{1 t} \tau_{2 s} \quad \tau_{2 s} \tau_{2 t}=-q^{-1 / 4} \tau_{2 t} \tau_{2 s}$
where $s<t$.

References

Biedenharn L C 1989 J. Phys. A: Math. Gen. 22 L873

- 1990 Quantum Groups, Proc. 8th Workshop on Mathematical Physics (Clausthal 1989) (Lecture Notes in Physics 370) ed H D Doebner and J D Hennig (Berlin: Springer) p 67
Biedenharn L C and Tarlini M 1990 Lett. Math. Phys. 20271
Carow-Watamura U, Schlieker M, Scholl M and Watamura S 1990 Z. Phys. C 48159
Chaichian M and Kulish P 1990 Phys. Lett. 234B 72
Chaichian M, Kulish P and Lukierski J 1990 Phys. Lett. 237B 401
—— 1991 Phys. Lett. 262B 43
Floreanini R, Spiridonov V P and Vinet L 1991 Commun. Math. Phys. 137149
Hadjiivanov L K, Paunov R R and Todorov I T 1992 J. Math. Phys. 331379
Hayashi T 1990 Commun. Math. Phys. 127129
Kulish P P and Damaskinsky E V 1990 J. Plys. A: Math. Ger. 23 L415
Macfarlane A J 1989 J. Plys. A: Math. Gen. 224581
Majid S 1990 Int. J. Mod. Phys. A 51
Nomura M 1990 J. Phys. Soc. Japan 59439
—— 1991a J. Phys. Soc. Japan 60789
—— 1991b J. Plyss. Soc. Japan 603260
-_ 1991c J. Phys. Soc. Japan 604060
Pusz W and Woronowicz S L 1989 Rep. Math. Phys. 27231
Rittenberg V and Scheunert M 1992 J. Malh. Phys. 33436
Sun C-P and Fu H-C 1989 J. Phys. A: Math. Gen. 22 L983
Wess J and Zumino B 1990 Covariant differential calculus on the quantum hyperplane Preprint CERN-TH-5697/90
Zhang R B, Gould M D and Bracken A J 1991 Nucl. Plyys. B 354625

[^0]: \dagger The choice made in (19) corresponds to that of Pusz and Woronowicz (1989), but differs from that of Biedenharn (1989) and of Rittenberg and Scheunert (1992). Note that only the former leads to simple q-commutation relations.

