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I 5 l T E R  TO THE EDITOR 

Sets of covariant and contravariant spinors for SUq(2) and 
alternative quantizations 

C Quesnet 
Physique Nuclbite Thborique el Physique Malhimatique, UniversitC Libre de Bmelles, 
Campus de la Plaine cp229, Boulevard du Piomphe, 81050 Bruxelles, Belgium 

Received 27 May 1992 

Abstract m sets of covariant and contravariant q-bmonic spinors acting in the tensor 
product of m Fa& spaces are constructed and their pcommutation relations determined. 
Both their transformation properties under the 9-algebra au,(2) and its dual matrix 
pseudogroup SU&) are considered It is proved that for m > 1 the contravariant 
spinors are not related to the covariant ones through Hermitian conjugation. Similar 
results are also obtained for q-fermionic spinors. 

In recent years, it has been observed that essentially two types of q-deformed 
Heisenberg-Weyl and Clifford algebras are relevant to the theory of quantum group 
and supergroups. 

On one hand, Biedenharn (1989) and Macfarlane (1989) independently introduced 
a q-analogue of the harmonic osciuator and its associated q-boson operators. By 
considering two independent pairs of such operators a!, a; ,  i = 1, 2, they extended 
the Schwinger realization of 4 2 )  to the corresponding q-algebra su (2). The 
same type of construction was then carried through for most q-algebras (&n and Fu 
1989, Hayashi 1990, Kulish and Damaskinsky 1990) and, by introducing a q-deformed 
fermionic oscillator, for most q-superalgebras (Chaichian and Kulish 1990, Chaichian 
er a1 1990, Floreanini et al 1991). 

On the other hand, it was observed that, contraq to what happens for ordinary 
boson or fermion operators in the q - 1 limit, the qdeformed creation operators 
do not transform covariantly under the dual matrix pseudogroup SU,(2). One has 
therefore to introduce a second type of q-boson (or q-fermion) operators Ai, A,, 
i = 1, 2, which may be obtained by using their transformation properties under 
SUq(2)  (hsz and Woronowicz 1989, Chaichian et al1991, Nomura 1991b, c) or under 
the corresponding q-algebra su,(2) (Biedenharn 1990, Biedenharn and Tarlini 1990). 
It appears that SUq(2)-covariance requires a particular coupling of both modes that 
is related to the non-commutativity factors in SU,(Z)-covariant differential calculus 
(Wess and Zumino 1990). Connections with the quantum group braid matrix have 
also been recently stressed (Rittenberg and Scheunert 1992, Hadjuvanov ef a1 1992). 
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The construction of covariant spinors ( A ! ,  A;) or contravariant ones ( A ~ ,  A ~ )  is 
of course a special case of the more general problem of defining tensor operators 
for quantum groups (Biedenharn 1990, Biedenbarn and ‘Eirlini 1990, Nomura 1990, 
1991a, b, c, Zhang et aZ1991, Rittenberg and Scheunert 1992, Hadjiivanov et a1 1992). 

Some additional problems arise when one considers m independent sets 
of covariant and contravariant q-bosonic spinors { (A! , ,  Ais), ( A , , ,  A*$)}, s = 
1,2,. . . , m, each acting in a different q-Fock space Fs, because, except for s = 1, 
they do not transform covariantly under SU,(2) in the tensor product space 
F(”) F1 @ F2 @ . . I @ F,. Hence, in the latter, commutativity of the various se& 
should be relaxed. Such a difficulty in the theory of tensor operators for quantum 
groups is known to be related to the non-commutativity of the su,(2) Hopf algebra 
co-product (Rittenberg and Scheunert 1992). 

Recently, Nomura (1991b, c) tried to solve this problem in the case where m = 2 
by determining q-commutation relations for creation and annihilation operators t i s ,  
tis, i, s = 1, 2, under the following restrictions: (i) invariance under the SUq(2)  
transformations, (ii) uniqueness of scalar and vector operators made from given 
sets of spinors (as in the q - 1 limit), and (iii) consistency conditions imposed by 
associativity. It turns out, however, that the operators found do not satisfy property 
(ii) if ti, is def ied as the Hermitian conjugate of ti,.t 

The purpose of the present letter is two-fold: fmtly to show that Nomura’s 
problem does only have a solution provided no Hermiticity relation is assumed 
between covariant and contravariant spinors; secondly to find by q-algebraic 
techniques the explicit expressions of the latter in terms of the operators A!,, A,,, 
or a!#, sib, acting in F, only. In such a way, we shall unify the approaches based 
on the transformation properties of spinors under SUq(2) and su,(2) respectively, 
while providing a generalization of Nomura’s results to arbitrary m values and to 
q-fermionic spinors. Extension of the present work to SUq(n)  is in progress and will 
be reported elsewhere. 

Let us first consider the case of q-bosonic spinors. The two-dimensional matrices 
belonging to SU,(2) are denoted by 

M = ( :  :) 
where a, b, c, d are nonammuting objects satisfying the relations 

and q is a positive number (q # 1). Under the ‘-involution, df is transformed into 

t In Nomura’s papen, t!,. ti , ,  t i2 and t g  are denoted by at, b t z  et  and f l ,  respectively. For their 
qcommutation relations, four different solutions are obtained. For that given in equation (217) of 
Nomura (1991c), it is easy to check that the braiding relation is not satisfied by e ta te ,  for instance. One 
gels similar results for the remaining three solutions. 
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and q is left unchanged. 
By definition covariant and contravariant spinors, denoted by t', = (t!srti,)  and 

us = (qsr uh) respectively, obey the following transformation laws under SUq(2): 

iJ = t f ,M v: = u,M*. (4) 

Here uis is not assumed a priori to be the Hermitian conjugate of 11.  If us = 
( U ~ ~ , ' U . ~ ~ )  is a contravariant spinor, then 6, = (iLls, iLzs) = (q1/4u2a,-q-1/4~18) is 
a covariant one. We shall collectively denote both covariant spinors t? and zi, by T* 
and consider two s values (hence m = 2). 

For a given s value, Nomwa (1991b) found two sets of q-commutation relations 
satisfying conditions (i), (ii), and (iii), as enumerated in the introduction. One of 
them is given by 

'U. t t  - 1Pt t  'U. 
'U.ls'u2s = 4'~2u~'U. l s  2s 1s - q l a  2s 

t t - 1 I Z t  t t za t i ,  - 4 t1st2s 

Illat;$ = q1/2t;,ula ul*t;s = qt;,ul, + 1 (5)  

'U.2,tL = Qtl$u2s + (4-  I)trs"lJ t 1 

while the other can be obtained from (5) by the substitutions tj, - tl,, ula CL U=, 
and q + q-'. Both solutions were found previously by PUSZ and Woronowa (1989). 
In the following, we shall restrict ourselves to the case (5). 

Considering now T~ and 7, and imposing condition (ii) of Nomura, we obtain 
four sets of relations of the type 

according to the choice made for I, and T ~ .  Here [rS x T~]: denotes the coupling 
of the two spinors and T~ to a resultant scalar or vector by means of the SU,(2) 
Wigner coefficients 

where 

\ I  g-mlz 
Jrzl, 1 q = 1  ( ;m,$-m110) ,=  

q"/2 q-"12 
[XI, 2 q ~ ~ a  - q-1j2 (8) 

is a q-number. The exponents cy and p are two real numbers subject to the restriction 
that T] and T~ should satisfy some consistency conditions imposed by associativity 
(Nomura's condition (E)). In principle, we may have different sets {a,,pa} for the 
four possible choices for ,T~). 
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Considering first the case { T , , T ~ }  = {tf,tl} and working out the braiding 
relations for t!lt)2t& and t~,tf,i~2, we obtain two families of solutions for {al, PI} 
corresponding to arbitrary ai and to pl = a1 + 6,. with 6, = 1 or -1. Proceeding 
in the same way for { T ~ , T ~ }  = {zil,zi2}, {z i , , t$} .  and (t; , .5,} ,  we get similar 
results, namely p,, = a* + 6,, a = 2, 3, 4 with arbitrary aa and 6. = $1. Working 
out kally the braiding relations for tIltf2iikl, t ~ 2 t ~ , i i , 2 ,  t/liij2iiki, and t/2iijliik2, 
we obtain the additional conditions 6, = 6, = 4 = 6, = 6, al = cy2 = a, and 
a3 = a4 = -a - $6. So altogether we are left with two families of solutions 
corresponding to 6 = 1 or -1, and arbitrary a. 

The simplest solutions correspond to the case where we have the same exponents 
in (6) for any { T ~ , T ~ } ,  namely 01 = -:6 and p = i6. Hence the q-commutation 
relations for the components of two covariant q-bosonic tensors with s = 1 and t = 2,  
respectively, can be written as 

TIS T i t  = q- 1r4r1t rIa 

T2J18 = 91/4Tl,% 

or 

TlSTIt = 41/4~lrTls  

T2sT,t = q-1/4TI1r2, + (4'14 - q-3'4)TztT1. 

TlaTzt = q'/4r2,Tls - (4314 - q-*/4)T1172s 

T2,Tz, = 4-'/472t72a 

T,* 7-21 = 9- 1/4721 7-Is 

(9) 

(10) 
Tzar,, = P T 2 ,  TZS 

according to whether 6 = 1 or -1. Equation (9) is reminiscent of some relations 
previously found by Carow-Watamura er d (1990). It is now clear that neither (9) 
nor (10) are compatible with the Hermiticity conditions U;, = ( t l ) '  imposed by 
Nomura (1991b, c). From (9), for instance, we indeed obtain tii& = - 

drawn had we left a arbitrary. A5 a matter of fact, the existence of a pair of 
solutions, as given in (9) and (lo), is intimately connected with the lack of Hermiticity 
relation between t!, and uir. It can indeed easily be checked that if { t f , t l } .  
{ t f ,z i2} ,  { C 1 . t i } ,  {zi1,d2} satisfy (9), then the Hermitian conjugates { u ~ , ~ ~ } ,  

{xi, &}, {&,U;}, { fl, G} fulfil (10). We shall now contrast the approach based 
upon SV,(2) considered above with that relying on su,(2). With the help of the 
latter, which is much simpler, we shall derive the qammutation relations of m sets 

or fis = (iils,iiZs). 

relations 

( q 3 / 4  - q -1/4 ) i t  ,* ft z1 and ulluzL = q'/4u22ull. Similar conclusions would have been 

of q-bosonic covariant spinors I*, s = 1, . . ., m, where T* stands for ti  = (tl,, t t  fzl) 

The s u , ( 2 )  q-algebra is the associative algebra with generators J,, J + .  J - ,  and 

[ J o ,  J * 1 =  f J *  [ J + ,  J - 1 =  [2J01q (11) 
where [2J,] ,  is defied as in (8). It is a quasitriangular Hopf algebra with a co- 
product A, a co-unit E ,  an antipode S, and a universal 'R matrix, given by 

(1%) 
(1%) 

A J , =  J , @ I + I @  J,  A J ,  = J , Q q  Ja/2 + q- J 0 / 2  J* 

cJo = EJ* = 0 

S J ,  = -Jo SJ, = -q*'/'J * .  (124 
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respectively (Majid 1990). 

(Biedenharn 1989, Macfarlane 1989) 
The q-algebra suq(2) admits a q-analogue of su(2) Schwinger realization 

(13) Jo = $( Nl - N,) Jt = afa ,  J-  = aZal  t 

in t e r m  of the q-boson operators Ni = ( N i ) t ,  a i ,  ai  = (ai)’ ,  i = 1,2, acting in a 
q-Fock space F and satisfying the relations 

[ ~ , , a j ]  = 6 . . a +  at 3 [ ~ ~ , a ~ ]  = - & . . a . ’  $3 J 

[ a f , a J ]  = [a i ,a2]  = [ a l , a J ]  = [a2 ,a i]  = O  
a i a i  t - q*’/’aia; = q i N t / z .  

(14) 

An irreducible tensor of rank X with respect to ~ ~ ( 2 )  is defined as a set of 
2X + 1 operators T i ,  p = A, X - 1,. . . ,-A, satisijing the relations (Rittenberg 
and Scheunert 1992) 

1/2 A Jo(T,”) = P J* (7;) = ([A 7 pl,[X ?c !J + 1Iq) TP*i (15) 

where 

From T,, one can construct by Hermitian conjugation another irreducible tensor of 
rank X 

T; = (-1)“-’q’/2(T_”,)t. (18) 

Covariant q-boson creation (resp. annihilation) operators A! (rap. Ai),  i = 1, 2, 
acting in F, are defmed by (15) where X = &p = $, T;/i = Ai (resp. AI), and 
T!(;, = A; (resp. A2). Up to some arbitrary function of N ,  + N,, they can be 
expressed in terms of Ni, a i ,  ai  ast 

t The choice made in (19) corresponds to that of Pis2 and Woronowia (1989), but differs from that of 
Biedenham (1989) and of Rittenberg and Scheunert (1992). Note that only the former leads to simple 
qsommutation relations. 
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With the contravariant annihilation operators Ai, the covariant creation operators 
Af satisfy q-commutation relations analogous to those given in (5) with Af and Ai 
substituted for t i ,  and uis respectively. 

Consider now m independent q-Fock spaces Fs, s = 1,2, ..., m, and 
corresponding q-boson operators Ni,, U!$, uta, A!,, Ai,, i = 1,2, s = 1,2 , .  . ., m. 
For different s values, these operators are assumed to commute with one another, 
while for a given s value they satisfy equations similar to (5) and (14). 

In the tensor product space Fcm), the action of suq(2)  is given by the iterated 
co-product 

or 

where I(”) G I @  I @I ...@I I (m. times). Hence, irreducible tensors of rank X in 
F(”) are defied by (15) and (17), where J ,  is replaced by 

As emphasized by Rittenberg and Scheunert (1992), if T,” is an irreducible tensor 
of rank X in F, or in F,, then T,” @ I  is also an irreducible tensor of rank X in 
F(,) = F,@IF, in the former case, whereas I@T,” is not in the latter. By generalizing 
their procedure for constructing irreducible tensors in the tensor product space F(*), 
the following statements can be easily proved: 

(i) If 2’2 is an irredualJle tensor of rank X in J?(“‘-’), then T,” @I I has the same 
property in J?(m). 

(U) If T,” is an irreducible tensor of rank X in Fm, then 

where Rt and Rf are given by the decomposition R = E,. Ri @I R$ of the R 
matrix (12d). 

By using (126), (22), and (23). one obtains the result that the operators 

ti, = Ail @ I(”’-’) 4, = A:, @ (24) 

and 
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where s = 2,. . . , m, are the components of m covariant spinors in F(m). The same 
is true for the operators Gis ,  i = 1,2, s = 1,2, . . . , m, obtained by replacing Af, by 
Ai, in (24) and (U). It is actually straightforward to check that all these operators 
satisfy (15) and (17) where J ,  is replaced by A(m-l)J,. 

It is now an easy task to prove that the operators defined in (24), (25) and 
those obtained by substituting A;, for A!, have the same qammutation relations 
as those obtained by using transformations under SUq(2) ,  namely that they satisfy 
(5) and (9), where in the former 1 4 s < m and in the latter 1 < s < t < m. 
With the help of (13), (19) and (Zl), we have thus realized the operators that are 
solutions of Nomura's problem in terms of Ni,, Ai,, Ai, or equivalently in terms 
of Ni,, aia, ais. From (24), (29, and their counterparts for C i s ,  it is clear that 
uil = (t!])', but uir + (tj,)' for s = 2,. . . , m. In spite of this lack of Hermiticity, 
the SUq(2)-invariant operators xi t)suis, s = 1,. . . , m, are Hermitian as they can 
be expressed as 

The case of q-fermionic spinors can be dealt with in a similar way. The q- 
algebra suq(2) admits the realization (13) in terms of q-fermion operators N i ,  ai ,  
ai ,  i = 1, 2, satisfying relations of the type 

Such operators may, however, be considered as ordinary fermion operators 
(Floreanini el a1 1991). 

Covariant q-fermionic spinors are given by equations similar to (24), (29, and 
their counterparts for C i s ,  where Af, now assumes the following form: 

t - t -(2N.+Nz.)/4 = a;,(l + (q-1/2 - 1 ) ~ ~ ~ )  4. A,, - azs9 
At - t -N1./4 = 

1s - a1sq 
(28) 

where use is made of the properly N!* = N i , .  Instead of (5) and (S), they satisfy 
q-anticommutation relations of the type 

2 2 2 I t  tt  - -q-'/2tt tt (4,) = (G,) = (u1.) = (.2J2 

UIrU& = -q -1/Zu zs 

u,*tf, = -tfsuls + 1 

2s l a  - Is  2s 

.z,tt, = - q - w  15 U 2s 

u**tl  = -t4,u2, + (q-1 - I)tf,Ul, + I 
Is t t  2s - - -q-'/2tt 2s 1.4 (29) 

and 

where s < t. 
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